

	
	
		Hacking at 0300

		Thoughts on web design and programming from a very occasional volunteer webmaster

	

	
	
		

	

	

	

	

			
		
			« Creating PDFs with PHP, part 2: A Blank Page

			Creating PDFs with PHP, part 4: Images »

		

		
			
				Creating PDFs with PHP, part 3: Drawing

			

			
				Now that we can create blank PDF's, it's time to add some stuff. Vector drawing commands (lines and shapes) are simple; you just add the commands to the page content stream. In terms of the original class that would be:

$this->pages[count($this->pages)-1]->contents .= "the command\n";
// we just need some whitespace at the end, but the newline makes it easier to read the resulting PDF

But to make things easier, we can keep track of the last page:

function newpage(){
 parent::newpage();
 $this->currentPage = $this->pages[count($this->pages)-1];
}
// and now adding commands is:
$this->currentPage->contents .= "the command\n";
// this also has the advantage that we can manipulate currentPage to add commands to other content streams

There are lots of commands, all of which are postfix (parameters come before operators). There are no math operators or stack manipulation operators; any calculation has to be done before generating the PDF and numbers inserted directly.

See the code.

Drawing is done by creating a path, then filling or stroking (outlining) it. Some useful commands include:

	x y m
	Move to point (x, y).
	x y l
	Draw a straight line from the current point to (x, y).
	h
	Close the current path by drawing a line back to the last point moved to. You have to explicitly close a path to fill it, and even stroking it looks better if it is closed since PDF will make the last line join the first with an elegant miter. Just drawing a line to the starting point (like 0 0 m 1 0 l 0 1 l 0 0 l) doesn't count.
	x1 y1 x2 y2 x3 y3 c

Draw a cubic Bézier curve from the current point to (x3, y3), with (x1, y1) and (x2, y2) as control points. You can play with Bézier curves and manipulate control points to get a feel for them at Mike Kamermans's site.
	x y w h re
	Draw a closed rectangle from (x, y) with width w and height h. Shorthand for
x y m (x + w) y l
(x + w) (y + h) l
x (y + h) l
h. But PDF will do the math for you.
	r g b RG
	Set the stroking color to (r, g, b) where the color components are fractional, from 0 to 1, unlike PHP where the components go from 0 to 255.
	r g b rg
	Set the fill color to (r, g, b).
	w w
	Set the line width for stroking to w.
	S
	Stroke the current path. The fill and stroke commands discard the current path. That means you can't fill then fill a path; you have to recreate it.
	f
	Fill the current path.

So extending the basic class to allow drawing is straightforward. The only gotcha is that the coordinate system is backwards: the origin is at the lower left corner and the y axis goes up (like a mathematical graph), unlike PHP imaging and every other computer graphics package I've ever used, where the origin is at the top left.

See a sample page.

How'd you do that cool Apple logo?

Luckily, SVG uses Bézier curves as well, and can be easily read (paths like M 1,2 C 3,4 5,6 7,8 in SVG becomes 1 2 m 3 4 5 6 7 8 c in PDF). You just have to invert the y-values to reflect the reflected coordinate system. So finding a good SVG image lets you create a PDF image:

$pdf->moveto(28.70919,92.37034);
$pdf->curveto(32.22477,92.37025,36.46696,91.64368,41.43575,90.19065);
$pdf->curveto(46.45132,88.73743999999999,49.77944,88.01088,51.42013,88.01096);
$pdf->curveto(53.52944,88.01088,56.97475,88.83118999999999,61.756057,90.4719);
$pdf->curveto(66.537237,92.11243,70.685667,92.93275,74.201377,92.93284);
$pdf->curveto(79.966907,92.93275,85.099717,91.38587,89.599807,88.29221);
$pdf->curveto(92.130957,86.51088,94.638767,84.09682000000001,97.123244,81.05002);
$pdf->curveto(93.373147,77.862449,90.630967,75.02649,88.896687,72.54219);
$pdf->curveto(85.755967,68.04213,84.185657,63.07338,84.185747,57.63594);
$pdf->curveto(84.185657,51.682770000000005,85.849717,46.31558,89.177937,41.53438);
$pdf->curveto(92.505957,36.75309,96.302824,33.729659999999996,100.56855,32.46407000000001);
$pdf->curveto(98.787204,26.69842,95.834084,20.674989999999994,91.709187,14.393749999999997);
$pdf->curveto(85.474717,4.971879999999999,79.287227,0.26094000000000506,73.146687,0.26094000000000506);
$pdf->curveto(70.709107,0.26094000000000506,67.334107,1.0343799999999987,63.021687,2.581249999999997);
$pdf->curveto(58.755997,4.128129999999999,55.14663,4.9015600000000035,52.19356,4.901570000000007);
$pdf->curveto(49.24038,4.9015600000000035,45.79507,4.104690000000005,41.85763,2.510940000000005);
$pdf->curveto(37.96696,0.8703200000000066,34.8029,0.05001000000000033,32.36544,0.04999999999999716);
$pdf->curveto(25.00603,0.05001000000000033,17.78729,6.284369999999996,10.70919,18.75313);
$pdf->curveto(3.63105,31.081220000000002,0.09199,43.17496,0.092,55.03438);
$pdf->curveto(0.09199,66.04993999999999,2.7873,75.02649,8.1779402,81.96409);
$pdf->curveto(13.61542,88.9015,20.45916,92.37025,28.70919,92.37034);
$pdf->moveto(73.006057,120.07346);
$pdf->curveto(73.193477,119.46397,73.310667,118.92491,73.357627,118.45627);
$pdf->curveto(73.404417,117.98741,73.427857,117.51866,73.427937,117.05002);
$pdf->curveto(73.427857,114.04991,72.724727,110.76867,71.318557,107.20627);
$pdf->curveto(69.912237,103.64367,67.685677,100.33899,64.638877,97.29221);
$pdf->curveto(62.013807,94.71399,59.412247,92.97962,56.83419,92.08909);
$pdf->curveto(55.1935,91.57337,52.70913,91.17493,49.38106,90.89377);
$pdf->curveto(49.47476,98.01868,51.32632,104.18272999999999,54.93575,109.38596);
$pdf->curveto(58.591927,114.58897,64.615367,118.15147,73.006057,120.07346);
$pdf->fill (0,149,182); // biondi blue

Yes, the image is trademarked. But I think this use is OK, since I'm acknowledging it as the Apple logo. If Apple's lawyer's find me, I'll be thrilled to be so important.

The code for the rectangle and S-curve is:

// filled rectangle
$pdf->moveto(100, 100);
$pdf->lineto(100,200);
$pdf->lineto(200,200);
$pdf->lineto(200,100);
$pdf->closepath();
$pdf->fill(0,255,0);
// rectangle outline, using the re command
$pdf->rect(100, 100, 100, 100);
$pdf->linewidth(10);
$pdf->stroke(255, 0, 0);
// Bézier curve
$pdf->moveto(200, 250);
$pdf->curveto(100, 200, 300, 200, 200, 150);
$pdf->stroke(0, 0, 0);

I don't need no Bézier curves—I need circles!

Bézier curves are nice mathematically; they're polynomials, easily differentiated and easy to splice together in esthetically pleasing ways. But they're not circles. And you can't get an exact circle with cubic Béziers. The best you can do is approximate a set of arcs and join them together. To get a good approximation, each arc has to be 90 degrees or less. You match the slopes at the endpoints and the curvature at the midpoint, and you can do very well: according to Don Lancaster the worst error is one part in a thousand. If you need better than that, you shouldn't be getting your drafting advice from a pediatrician. The math for an arbitrary arc of an arbitrarily oriented ellipse is straightforward but hairy; L. Maisonobe has the details. Since I'm so nice, I implemented it in PHP:

define ('M_TAU', 2*M_PI); // http://www.math.utah.edu/~palais/pi.html
function ellipsearc ($x, $y, $a, $b=NULL, $theta=0, $lambda1=0, $lambda2=0){
	// get the Bézier points of the elliptical arc with the ellipse centered at $x, $y, with major and minor semi-axes $a and $b,
	// and major axis at $theta to the x-axis,
	// with the arc starting at angle $lambda1 from the major axis (not the x-axis!) and ending at $lambda2
	// all angles are in radians.
	// returns an array of arrays, with each sub-array being a segment
	// of the final curve, with 8 elements, the x and y coordinates of
	// the control points.

	// normalize parameters
	if ($b === NULL) $b = $a;
	while ($lambda1 < 0) $lambda1 += M_TAU;
	while ($lambda1 >= M_TAU) $lambda1 -= M_TAU;
	while ($lambda2 <= 0) $lambda2 += M_TAU;
	while ($lambda2 > M_TAU) $lambda2 -= M_TAU;
	if ($lambda2 < $lambda1){
		// goes through 0; split at 0;
		return array_merge(
			ellipsearc($x, $y, $a, $b, $theta, $lambda1, M_TAU),
			ellipsearc($x, $y, $a, $b, $theta, 0, $lambda2)
);
	}else if ($lambda2 - $lambda1 > M_PI_2){
		// Draw arcs less than 90 degrees, so bisect the arc
		return array_merge(
			ellipsearc($x, $y, $a, $b, $theta, $lambda1, ($lambda2+$lambda1)/2),
			ellipsearc($x, $y, $a, $b, $theta, ($lambda2+$lambda1)/2, $lambda2)
);
	}
	
	// scale angles.
	$eta1 = scaleangle($lambda1, $a, $b);
	$eta2 = scaleangle($lambda2, $a, $b);
	
	// find the control points
	$x0 = ellipsepoint($x, $y, $a, $b, $theta, $eta1);
	$x3 = ellipsepoint($x, $y, $a, $b, $theta, $eta2);
	$delta = $eta2-$eta1;
	$tan = tan($delta/2);
	$alpha = sin($delta)*(sqrt(4+3*$tan*$tan)-1)/3; // Maisonobe's equation 15
	// formulae from Maisonobe's section 3.4.1
	$x1 = controlpoint($x0, $alpha);
	$x2 = controlpoint($x3, -$alpha);
	return array(array(
		$x0[0], $x0[1],
		$x1[0], $x1[1],
		$x2[0], $x2[1],
		$x3[0], $x3[1]
));
}
function scaleangle($lambda, $a, $b){
	// parameterized angle from Maisonobe's section 2.2.1
	return atan2(sin($lambda)/$b, cos($lambda)/$a);
}
function ellipsepoint($x, $y, $a, $b, $theta, $eta){
	// parameterization of an ellipse. Maisonobe's equation 3 and 4
	// returns a 4-element array, with the coordinates first then the derivative
	$costheta = cos($theta);
	$sintheta = sin($theta);
	$coseta = cos($eta);
	$sineta = sin($eta);
	return array(
		$x+$a*$costheta*$coseta-$b*$sintheta*$sineta,
		$y+$a*$sintheta*$coseta+$b*$costheta*$sineta,
		 -$a*$costheta*$sineta-$b*$sintheta*$coseta,
		 -$a*$sintheta*$sineta+$b*$costheta*$coseta,
);
}
function controlpoint($x, $alpha){
	// returns a point (as a 2-element array) that is $alpha from $x [0,1] along the vector $x[2,3]
	return array(
		$x[0]+$alpha*$x[2],
		$x[1]+$alpha*$x[3]	
);
}

For example, ellipsearc (100, 120, 45) returns the curves for a circle centered at (100,120) with radius 45, ellipsearc (100, 120, 50, 40) gives an ellipse
centered at (100,120) with major axis horizontal, with major semiaxis (half the width) 50 and minor semiaxis (half the height) 40. The "major axis" can be shorter than the minor axis; the designation is just of the axis that determines the orientation. ellipsearc (100, 120, 50, 40, deg2rad(60)) gives an ellipse
centered at (100,120) with major axis at 60 degrees from the horizontal, with major semiaxis (half the width) 50 and minor semiaxis (half the height) 40. ellipsearc (100, 120, 45, NULL, 0, deg2rad(45), deg2rad(135)) returns the curves for an arc of a circle centered at (100,120) with radius 45, with the arc extending from 45 degrees to 135 degrees.

It returns an array of arrays, like:

[
 [10,10,20,20,30,30,40,40], // a Bézier curve from (10,10) to (40,40) with control points (20,20) and (30, 30)
 [40,40,50,50,60,60,70,70],
 [80,80,90,90,100,100,10,10]
]

So to draw the ellipse from the sample, use

$arcs = ellipsearc (200, 600, 150, 50);
$pdf->moveto($arc[0][0], $arc[0][1]);
foreach ($arcs as $arc) $pdf->curveto($arc[2], $arc[3], $arc[4], $arc[5], $arc[6], $arc[7]);
$pdf->closepath();
$pdf->stroke (0, 127, 127);

And to draw a wedge (e.g. pie chart):

$arcs = ellipsearc (200, 600, 150, 150, 0, 0, deg2rad(60));
$pdf->moveto(200,600); // the center
$pdf->lineto($arc[0][0], $arc[0][1]);
foreach ($arcs as $arc) $pdf->curveto($arc[2], $arc[3], $arc[4], $arc[5], $arc[6], $arc[7]);
$pdf->closepath();
$pdf->fill(0, 127, 127);

Hope this helps someone; it was interesting for me.

Continued…
							

	
			
					This entry was posted by Danny on March 31, 2011 at 9:18 pm under PDF, PHP. 					
											You can leave a response, or trackback from your own site. Follow any responses to this entry through the RSS 2.0 feed.

					
			

		

	

			

	

Leave a Reply

Warning: Undefined variable $user_ID in /home/public/blog/wp-content/themes/evanescence/comments.php on line 75

Name (required)

E-Mail (will not be published) (required)

Website

Δ

	
	

	
	
			Free Medical Advice

			

		
	
		Recent Posts

			
					Using tagged template literals, revisted
									
	
					HTTPS!
									
	
					Using tagged template literals
									
	
					Updated bililiteRange
									
	
					Classic Editor
									

		
	Pages

				About
	Acknowledgements
	Extending jQuery UI Widgets
	Projects
	Understanding jQuery UI widgets: A tutorial

			
	Categories

bililiteRange
Javascript
jQuery
Judaism
Medical Informatics
Microsoft Office
OpenOffice.org
Parsedown
PDF
PHP
Scheme
Uncategorized
Web Design
Wordpress

	March 2011	S	M	T	W	T	F	S
	 	1	2	3	4	5
	6	7	8	9	10	11	12
	13	14	15	16	17	18	19
	20	21	22	23	24	25	26
	27	28	29	30	31	

		« Feb
		
		Apr »
	

	

	Archives

		Archives
		Select Month
 January 2023
 October 2022
 September 2022
 September 2020
 August 2020
 July 2020
 June 2020
 May 2020
 April 2017
 April 2016
 January 2016
 April 2015
 March 2015
 February 2015
 January 2015
 December 2014
 May 2014
 April 2014
 March 2014
 February 2014
 January 2014
 December 2013
 October 2013
 September 2013
 August 2013
 July 2013
 April 2013
 March 2013
 February 2013
 January 2013
 December 2012
 October 2012
 September 2012
 August 2012
 July 2012
 June 2012
 May 2012
 April 2012
 March 2012
 February 2012
 January 2012
 December 2011
 November 2011
 October 2011
 August 2011
 July 2011
 June 2011
 April 2011
 March 2011
 February 2011
 January 2011
 December 2010
 November 2010
 October 2010
 July 2010
 March 2010
 February 2010
 January 2010
 December 2009
 November 2009
 October 2009
 September 2009
 July 2009
 June 2009
 May 2009
 April 2009
 March 2009
 February 2009
 January 2009
 October 2008
 August 2008
 July 2008
 December 2007
 November 2007
 October 2007
 August 2007
 July 2007
 May 2007
 April 2007

			
	Judaism

		Aish Hatorah
	Cross Currents
	National Young Israel
	Rabbi Goldson
	The Bililite Hebrew Keyboard
	Young Israel of St. Louis

	Medical Informatics

		Bililite

	Web Design

		A List Apart
	jQuery

	Meta

			Log in
	Entries feed
	Comments feed
	WordPress.org

		

	

	

	Entries (RSS) and Comments (RSS).

	Powered by WordPress. Theme Evanescence.

	

